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Abstract Photometric Stereo is a powerful image based 3d reconstruction technique
that has recently been used to obtain very high quality reconstructions. However,
in its classic form, Photometric Stereo suffers from two main limitations: Firstly,
one needs to obtain images of the 3d scene under multiple different illuminations.
As a result the 3d scene needs to remain static during illumination changes, which
prohibits the reconstruction of deforming objects. Secondly, the images obtained
must be from a single viewpoint. This leads to depth-map based 2.5 reconstructions,
instead of full 3d surfaces. The aim of this chapter is to show how these limitations
can be alleviated, leading to the derivation of two practical 3d acquisition systems:
The first one, based on the powerful Coloured Light Photometric Stereo method can
be used to reconstruct moving objects such as cloth or human faces. The second,
permits the complete 3d reconstruction of challenging objects such as porcelain
vases. In addition to algorithmic details, the chapter pays attention to practical issues
such as setup calibration, detection and correction of self and cast shadows. We
provide several evaluation experiments as well as reconstruction results.

1 Introduction

Photometric stereo is a well established 3d reconstruction technique based on the
powerful shading cue. A sequence of images (typically three or more) of a 3d scene
are obtained from the same viewpoint and under varying illumination. From the
intensity variation in each pixel one can estimate the local orientation of the surface
that projects onto that pixel. By integrating all these surface orientations, a very
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detailed estimate of the surface geometry can be obtained. Photometric stereo can
also provide the surface reflectance properties as part of the same process.

The first reference for photometric stereo is [51]. In early papers (see [22]) the
surface reflectance model was constrained to be Lambertian, an assumption that
considerably simplifies calculations. Photometric stereo was subsequently relaxed
to non-Lambertian reflectance models (e.g. [30, 32, 34]) but the full potential of
the technique was only recently demonstrated with works such as [44, 29, 14] that
obtained reconstructions of spectacular accuracy. Furthermore, in recent work [33]
photometric stereo was shown to be able to significantly refine reconstruction results
obtained by 3d laser range scanners. However, the method in its classic formulation
suffers from some key limitations

• To obtain a reconstruction one must photograph the object in the same pose sev-
eral times under changing illumination. This makes it very difficult to reconstruct
a moving or deforming object during its motion.

• All photographs must be taken from a single view-point. This restricts recon-
structions to 2.5D depth-maps and precludes the full reconstruction in-the-round
of a closed 3d surface.

In this chapter we describe two advances in the state-of-the-art of Photometric
stereo that alleviate these two limitations. Firstly we show how a coloured-light
photometric stereo variant can be used to obtain independent reconstructions of the
object with each photograph obtained. This makes it trivial to use the technique to
reconstruct deforming objects such as moving cloth or faces. Second, we describe an
elegant generalisation of photometric-stereo to multiple view-points. This method
can obtain very accurate closed-surface reconstructions of objects in-the-round such
as sculpture.

2 Photometric stereo with coloured light

To motivate this work, consider the problem of obtaining a dynamic 3d model of a
deforming object such as cloth or a human face. This topic has received considerable
attention in recent literature [38, 39, 41, 48, 49]. The complexity underlying the
simplest of cloth and facial motions motivates capturing geometry and motion data
from the real world.

Existing algorithms one might employ for capturing detailed 3d models of de-
forming objects include multiple view stereo [42], photometric stereo [20, 46], and
laser based methods [28]. However, most of these techniques require that the subject
stand still during the acquisition process, or move slowly [31].

This section describes a practical technique for acquiring complex motion data
from real objects such as cloth or a face. The required setup consists of an ordinary
video camera and three coloured light sources (see Fig. 1). The key observation is
that in an environment where red, green, and blue light is emitted from different
directions, a Lambertian surface will reflect each of those colours simultaneously
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Fig. 1 Setup. A schematic representation of our multispectral setup.

without any mixing of the frequencies [37]. The quantities of red, green and blue
light reflected are a linear function of the surface normal direction. A colour camera
can measure these quantities, from which an estimate of the surface normal direc-
tion can be obtained. By applying this technique to a video sequence of a deforming
object, one can obtain a sequence of normal maps for that object which are inte-
grated to produce a sequence of depth-maps. In essence this technique can be seen
as a variant of classic three-source photometric stereo. We will now give a brief
overview of that technique and then explain how it is related to coloured photomet-
ric stereo. We will then explain in more detail some of the practical aspects of the
method including calibration, how it compares numerically to ordinary photometric
stereo, and how to cope with shadows.

2.1 Classic three-source photometric stereo

In classic three-source photometric stereo we are given three images of a scene,
taken from the same viewpoint, and illuminated by three distant light sources. The
light sources emit the same light frequency spectrum from three different non-
coplanar directions. We will assume an orthographic camera (with infinite focal
length) for simplicity, even though the extension to the more realistic projective
case is straightforward [43]. In the case of orthographic projection one can align the
world coordinate system so that the xy plane coincides with the image plane while
the z axis corresponds to the viewing direction. The surface in front of the camera
can then be parametrized as a height function z(x,y). If ∇z is the gradient of the
function wit respect to x and y, one can define the vector

n =
1√

1+ |∇z|2
(

∇z
−1

)
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that is locally normal to the surface at (x,y). We can also define a 2d projection
operator P[x] = (x1/x3, x2/x3) so that it follows that ∇z = P[n].

Now for i = 1 . . .3 let ci(x,y) denote the pixel intensity of pixel (x,y) in the
i-th image. We assume that, in the i-th image, the surface point (x,y,z(x,y))> is
illuminated by a distant light source whose direction is denoted by the vector li
and whose spectral distribution is Ei (λ ). We also assume that the surface point
absorbs incoming light of various wavelengths according to the reflectance function
R(x,y,λ ). Finally, let the response of the camera sensor at each wavelength be given
by S (λ ) . Then the pixel intensity ci(x,y) is given by [37]

ci(x,y) =
(

l>i n
)∫

E (λ )R(x,y,λ )S (λ )dλ . (1)

The value of this integral is known as the surface albedo ρ so that (1) becomes a
simple dot product

ci = l>i ρn. (2)

Photometric stereo methods use the linear constraints of (2) to solve for ρn in a least
squares sense. From this they obtain the gradient of the height function ∇z = P[ρn]
which is then integrated to produce the function z itself. In three-source photometric
stereo, when the point is not in shadow with respect to all three lights, we measure
three positive intensities ci, each of which gives a constraint on ρn. If we write
L =

[
l1 l2 l3

]> and c =
[

c1 c2 c3
]> then the system has exactly one solution which

is given by
ρn = L−1c. (3)

2.2 Multi-spectral sources and sensors

This section provides the link between classic three source photometric stereo and
the multi-spectral/multi-sensor case. We follow the exposition of [25]. In colour
photometric stereo each of the three camera sensors (Red, Green and Blue) can be
seen as a linear combination of the three images of a classic photometric stereo
acquisition. To see this, consider the pixel intensity of pixel (x,y) for the i-th sensor,
given by

ci(x,y) = ∑
j

(
l>j n

)∫
E j (λ )R(x,y,λ )Si (λ )dλ . (4)

Note that as opposed to Eq. (1) the sensor sensitivity Si and spectral distribution E j
are different per sensor and per light source respectively. To be able to determine a
unique mapping between RGB values and normal orientation we need to assume a
monochromatic surface. We therefore require that R(x,y,λ ) = ρ (x,y)α (λ ). Where
ρ (x,y) is the monochromatic albedo of the surface point and α (λ ) is the character-
istic chromaticity of the material. Let
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vi j =
∫

E j (λ )α (λ )Si (λ )dλ

and
v j =

(
v1 j v2 j v3 j

)>
.

Then the vector of the three sensor responses at a pixel is given by

c =
[

v1 v2 v3
][

l1 l2 l3
]>ρn.

Essentially each vector v j provides the response measured by the three sensors when
a unit of light from source j is received by the camera. If matrix

[
v1 v2 v3

]
is

known, then we can compute

ĉ =
[

v1 v2 v3
]−1 c.

The values of ĉ can be treated in exactly the same way as the three gray-scale images
of section 2.1. The next section describes a simple process for calibrating colour
photometric stereo.

2.3 Calibration

In [19] the authors propose a simple scheme for calibrating objects that can be flat-
tened and placed on a planar board. The system detects special patterns on the board,
from which it can estimate its orientation relative to the camera. By measuring the
RGB response corresponding to each orientation of the material they estimate the
entire matrix

M =
[

v1 v2 v3
][

l1 l2 l3
]>

that links the normals to RGB triplets. Here we propose a two-step process. Firstly,
we use a mirror sphere to estimate light directions l1, l2and l3. This is a standard
process which has been applied in a number of photometric stereo methods. Sec-
ondly, we capture three sequences of the object moving in front of the camera. In
each sequence, we switch on only one of the three lights at a time. In the absence
of noise and if the monochromatic assumption was satisfied, the RGB triplets we
acquired would be multiples of v j when light j was switched on. We therefore do a
least squares fit to the three sets of RGB to get the directions of v1, v2 and v3. To
get the relative lengths of the three vectors we can use the ratios of the lengths of
the RGB vectors. The length of v jis set to the maximum length in RGB space, of all
the triplets when light j was switched on.
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2.4 Comparison with photometric stereo

To evaluate the accuracy of the per-frame depth-map estimation we reconstructed
a static object (a jacket) using classic photometric stereo with three images each
taken under different illumination. The same object was reconstructed using a sin-
gle image, captured under simultaneous illumination by three coloured lights, using
our technique. Figure 2 shows the two reconstructions side by side. The results
look very similar and the average distance between the two meshes is only 1.4% of
the bounding box diagonal. It is worth noting that even though photometric stereo
achieves comparable accuracy, it cannot be used on a non-static object whose shape
will change while the three different images are captured. Since our method only
uses one image, it is suitable for obtaining frame-by-frame reconstructions of a de-
forming object.

(A) (B) (C) (D)

(E) (F)

Fig. 2 Comparison with photometric stereo. (A-C) show three grayscale images captured by a
digital camera, each taken under a different illumination, providing the input to a classic photomet-
ric stereo reconstruction [51] shown in (D). (E) shows a frame from a jacket sequence, where the
same object is illuminated simultaneously by three different coloured lights. Our algorithm only
uses one such frame to generate the surface mesh shown in (F). Note that both algorithms give very
similar results, but only the new one (bottom row) can be applied to video since only one frame is
required to obtain a reconstruction. As a quantitative comparison, the average error between both
reconstructions is only 1.4% of the bounding box diagonal.
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2.5 The problem of shadows

One of the most important challenges for all photometric reconstruction methods
is the frequent presence of shadows in an image. No matter how careful the ar-
rangement of the light sources, cast or self shadows are an almost unavoidable phe-
nomenon, especially in objects with complex geometries. This section examines in
detail the phenomenon of shadows in photometric stereo with three light sources.

Shadows in photometric stereo have been the topic of a number of papers
[2, 6, 11]. Most papers assume we are given four or more images under four dif-
ferent illuminations. This over-determines the local surface orientation and albedo
(3 degrees of freedom) which implies that we can use the residual of some least
squares solution, to determine whether shadowing has occurred. However when we
are only given three images, as in the case of colour photometric stereo there are no
spare constraints against which to test our hypothesis. Therefore the problem of de-
tecting shadows becomes more difficult. Furthermore, when a pixel is in shadow in
one of the three images most methods simply discard it. Here we show how one can
use the remaining two image intensity measurements to estimate the surface geom-
etry inside the shadow region. Using an argument based purely on counting degrees
of freedom and equations, this is theoretically possible since we need to estimate 2
DOF per pixel (depth and albedo) and we have two independent measurements per
pixel. The solution is based on enforcing (1) integrability of the gradient field, as
well as (2) smoothness in the recovered shape.

Consider a three-source photometric stereo setup where one point is in shadow,
say in the 3-rd image. This implies that the image measurement of c3 cannot be used
as a constraint. Since each equation (2) describes a 3d plane, the intersection of the
two remaining constraints is a 3d line given by

(c2l1− c1l2)>n = 0, (5)

or equivalently
P[(c2l1− c1l2)]>∇z = 1. (6)

This equation was derived by [50] and used for stereo matching in a two-view pho-
tometric stereo setup, and subsequently used by [12] to perform uncalibrated pho-
tometric stereo and by [7] in their proof of non-existence of a general illumination
invariant. Here we show how this equation can be used in a least squares framework
to perform three-source photometric stereo in the presence of shadows.

2.5.1 Integrating in the shadowed regions

According to the image constraints and assuming no noise in the data, we can have
one of the following three cases:

1. The surface point is in shadow in two or more images. In this case there is no
constraint in ∇z from the images.



8 George Vogiatzis and Carlos Hernández

2. The surface point is not in shadow in any of the three images. In this case ∇z
coincides with P [

L−1c
]
.

3. The surface point is in shadow in exactly one image, say the 3rd. In this case ∇z
must lie on the line P[(c2l1−c1l2)]>∇z = 1. We call this line the shadow line of
the shaded pixel.

Now in the presence of noise in the data c, cases 2 and 3 above do not hold ex-
actly as P [

L−1c
]

and P[(c2l1−c1l2)] are corrupted. The estimation of the unknown
height function z becomes a least squares problem with two different data terms, one
for pixels under shadow and another one for pixels seen in all three images.

Under noise in the image data c, the 2d point P [
L−1c

]
and 2d line P[(c2l1 −

c1l2)] are not perfectly consistent with the model. For non-shadowed pixels, the
difference between model and data can be measured by the point-to-point square
difference term

E = |∇z−P [
L−1c

] |2. (7)

In the case of the shadowed pixels we have a point-to-line square difference term

E (3) = (P[(c2l1− c1l2)]>∇z−1)2. (8)

Assume we are given a labelling of pixels into all the possible types of shadow.
Let S contain all non-shadowed pixels while Si contains pixels shaded in the i-th
image. Our cost function becomes

∑
j∈S
E j + ∑

j∈S1

E (1)
j + ∑

j∈S2

E (2)
j + ∑

j∈S3

E (3)
j

which is a set of quadratic terms in ∇z and thus z. Finding the minimum of this
quantity is a simple unconstrained linear least squares problem that can be solved
using a sparse linear solver such as UMFPACK [9].

Figure 3 shows this idea applied in practise on synthetic data. It provides ev-
idence that in its present form the problem is ill-conditioned, especially in larger
shadowed regions (see Fig. 3c). The following section sheds more light on this and
describes our proposed remedy (see figures 3d and 3e).

2.5.2 Regularisation in the shadow regions

The linear least squares optimisation framework described in section 2.1 when ex-
ecuted in practise shows signs of ill-posedness in the presence of noise. This is
demonstrated in the synthetic case of figure 3 where three images of a sphere have
been generated. Three shadow regions corresponding to each of the three lights have
been introduced. Even though the overall shape of the object is accurately captured,
some characteristic ‘scratch’ artifacts are observed. These are caused by the point-
to-line distances which do not introduce enough constraints in the cost function. The
point ∇z can move significantly in a direction parallel to the corresponding shadow
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line only to gain a slight decrease in the overall cost. This results in violent pertur-
bations in the resulting height function that manifest themselves as deep scratches
that follow the 2d flow P[(c2l1− c1l2)].

If we push the analysis even further and have one of the images completely shad-
owed, we then fall back to the two-source photometric stereo setup shown in Fig. 4.
When only two images are available without shadow (see Fig. 4 top), after factoring
out the albedo (5) we can only determine the depth gradient along specific direc-
tions for each pixel P[(c2l1− c1l2)]. If we look at these directions as a vector field,
then depth can be computed independently along each streamline or “characteristic
curve” (see Fig. 4b). In other words, there is no constraint between the depth of two
characteristic curves and one pixel can only belong to a single characteristic curve.
After integrating every characteristic curve independently (see Fig. 4c), we obtain
a possible reconstruction that is different from the original true shape, but that per-
fectly agrees with the given constraints. In order to choose one among the possible
solutions, some type of regularisation is needed (see Fig. 4d and 4e).

Regularisation can be seen as a prior on the type of solutions we expect. In order
to better understand what types of prior might be relevant, let us restate the problem
assumptions. We have a three source photometric stereo setup with varying albedo,
and one of the lights is occluded, i.e. we locally have a two source photometric
stereo setup with varying albedo. From the theory we know that in the photometric
stereo setup, the albedo and the geometry are coupled, and if there is not enough
data available, both are indistinguishable. This coupling exactly indicates what two
types of priors one might use: either a shape smoothness prior favouring smooth
shapes or an albedo smoothness prior favouring smooth albedo. The exact type of
prior used should depend on the type of data captured. A good regularising criterion
must satisfy two main requirements:

• The scheme must be consistent with the linear least squares framework. No non-
linear constraints can be enforced.

• It must suppress noise while preserving as much of the data as possible.

In the following we describe two different regularisation schemes that favour
smooth shapes while preserving the data as much as possible. Their main differ-
ence is that one favours shapes with a smooth shading under the occluded light,
while the second one favours smooth shapes. The second scheme can be used in a
two-source photometric stereo setup as it is independent of the occluded third light
(see Fig. 4).

Shading regularisation

In this approach we want to impose regularisation on the collected shading intensi-
ties, thereby ”inpainting” [4] the shadowed regions in order to recover the intensi-
ties we would collect had the light not been occluded and the albedo been constant.
From equation (3) we can parametrize the shadow line as a function of the missing
shading µ
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∇z = P

L−1




c1
c2
0


+ µρL−1




0
0
1





 (9)

This parameter represents the value l>3 n would have, had the point not been in
shadow in the 3-rd image. In order to simplify the notation of (9) we define ma-
trix M = L−1 where vector mi is the ith column of matrix M, giving

∇z = P[c1m1 + c2m2 + µρm3] (10)

We observe that, because c1 and c2 already encode the albedo ρ in, equation (10)
is in fact independent of ρ due to the projection operator. We also note that ∇z is
not a linear function of µ meaning that we cannot directly regularise the missing
shading µ in a linear least squares framework. However, we can perform a change
of variables and introduce a new variable w per shaded pixel

w(µ) =
e>3 (c1m1 + c2m2)

e>3 (c1m1 + c2m2)+ µρe>3 m3
, (11)

with e3 = (0,0,1)>. The new variable w still specifies a location along the shadow
line of that pixel so equation (10) simply becomes

∇z = wP[c1m1 + c2m2]+ (1−w)P[m3] (12)

The term is now quadratic with respect to ∇z and w, allowing us to regularise the
solution in a meaningful way by using first order |∇w| and second order |∇2w|
regularisation terms on w. The point-to-line distance of (8) can now be replaced
with the following point-to-point distance

E (3) = |∇z−wP[c1m1 + c2m2]− (1−w)P[m3]|2+
α|∇w|2 +β |∇2w|2, (13)

where α and β are regularisation weights. As w is a proxy for µ , this corresponds to
introducing smoothness in the product l>3 n. We can therefore eliminate the scratch
artifacts while letting n have variability in the directions perpendicular to l3.

Shape regularisation

The most common way of regularising shape is using first-order and second-order
regularisation terms. In the context of a height field, this is achieved by minimising
the norm of the gradient of the height field |∇z| or minimising the Laplacian of the
height field |∇2z|. The latter is known to have good noise reduction properties and to
produce smooth well behaved surfaces with low curvature. However, both the gra-
dient and the Laplacian are isotropic so they tend to indiscriminately smooth along
all possible directions. See [1] for a good discussion of anisotropic alternatives to
Laplacian filtering in the context of gradient field integration. In the context of our
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(a)

(b) (c)

(d) (e)

Fig. 3 Regularization schemes. This is an experiment on a synthetic sphere designed to validate
the proposed regularisation constraints. (a) shows the input images where the black rectangles cor-
respond to occluded regions.This object is illuminated from three directions and the three white
regions are occluded in the corresponding images. Middle row shows the photometric stereo solu-
tion without shadows (b) and the effect of optimising the surface with no regularisation at all,i.e.
just using integrability (c). Note the characteristic ‘scratch’ artifacts. (d) shows the resulting sur-
face after adding a shading regularisation term with optimal values α = 6.1,β = 0. (e) shows the
resulting surface after adding a shape regularisation term with optimal values α = 0.08,β = 0.46.
See Section 2.5.2 for a description of the algorithms. The artifacts have been suppressed while the
data has been preserved unsmoothed. Note how both regularisation schemes give almost identical
results.
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problem, there is an efficient way of achieving anisotropic versions of both the first-
order and the second-order regularisation terms. From equation (6), we observe that
the shape is totally unconstrained along perpendicular directions to P[(c2l1−c1l2)].
The directions P[(c2l1 − c1l2)] define characteristic curves, visually showing the
constraint induced by the two lights (see Fig. 4b). Therefore a good way of regu-
larising the shape is along perpendicular directions u to the characteristic curves,
i.e. u>P[(c2l1−c1l2)] = 0. The point-to-line distance term (8) is therefore extended
with anisotropic first and second order regularisation terms

E (3) = (P[(c2l1− c1l2)]>∇z−1)2

+α|u>∇z|2 +β |u>H(z)u|2, (14)

α and β being the regularisation weights and H(z) the Hessian matrix.
Throughout all of the previous discussion we have assumed knowledge of la-

belling of pixels according to shadows. The next section discusses how we propose
to segment shadow regions in the image.

2.5.3 Segmenting shadowed regions

It is known [2] that in photometric stereo with four or more images one can detect
shadows by computing the scaled normal that satisfies the constraints in a least
squares sense. If the residual of this least squares calculation is high, this implies
that the pixel is either in a shadow or in a highlight. With three images however
this becomes impossible as the three constraints can always be satisfied exactly,
leaving a residual of zero. Recently, [6] proposed a graph-cut based scheme for
labelling shadows in photometric stereo with four or more images. Based on the
constraint residual, they compute a cost for assigning a particular shadow label to
each pixel. This cost is then regularised in an MRF framework where neighbouring
pixels are encouraged to have similar shadow labels. We would like to use a similar
framework but we must supply a different cost for assigning a shadow label. The
basic characteristic of a shadow region is that pixel intensities inside it are dark.
However this can also occur because of dark surface albedo. To remove the albedo
factor we propose to divide pixel intensities with the magnitude of the intensity
vector c. Our cost for deciding that a pixel is occluded in the i-th image is ci/‖c‖.
This still leaves the possibility that we mistakenly classify a pixel whose normal is
nearly perpendicular to the i-th illumination direction li. However in that case the
pixel is close to being in a self shadow so the risk from misclassifying it is small.
The cost for assigning a pixel to the non-shadowed set is given by

1√
3
−min

i

ci

‖c‖ .

We regularise these costs in an MRF framework under a Potts model pairwise cost
[15]. This assigns a fixed penalty for two neighboring pixels being given different
shadow labels. The MRF is optimised using the Tree Reweighted message passing
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(a)

(b) (c)

(d) (e)

Fig. 4 Two-source varying albedo photometric stereo setup. In this experiment we show a
two-source photometric stereo with varying albedo. (a) shows the two input images. (b) shows
the characteristic curves obtained by plotting seeds following the 2d flow P[(c2l1 − c1l2)]. (c)
shows one possible reconstruction of the characteristic curves. Note how each characteristic curve
is reconstructed independently as there is no constraint “across” the curves. Bottom row shows how
a successful reconstruction can be achieved when using the proposed shape regularisation scheme
with first order regularisation α = 0.1,β = 0 (d) and second order regularisation α = 0,β = 0.5
(e).
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(a) (b) (c) (d)

Fig. 5 Shadow segmentation. This experiment shows the result of our shadow region segmenta-
tion. From left to right, the three input images (a), (b), (c) and the mask with the resulting shadow
labels (d).

algorithm [24]. Figure 5 shows an example of applying our shadow region segmen-
tation to a real image.

2.6 Facial Capture Experiments

We have performed a first experiment with video data of a white-painted face il-
luminated by three coloured lights in a similar way as in [19]. The setup is cali-
brated as described in section 2.3. Figure 5 shows the three input images obtained
from a single colour frame. The automatic shadow segmentation results in Fig. 5d
demonstrate the accuracy of the shadow detection algorithm in Section 2.5.3. Fig-
ure 6 shows three different frames of the video sequence without taking the shadows
into account (left) and after detecting and adding the shading constraints (middle)
and the shape constraints (right). We can appreciate how the nose reconstruction is
dramatically improved when correctly processing the shadows (see arrows), even
though only two lights are visible in the shadowed regions. We also note that the
shape regularisation scheme fails in some boundary regions (see circles in right col-
umn) leading to an incorrect reconstruction of the side of the face. This is caused
by the Laplacian regularisation term. The term suffers from an ambiguity of two
possible solutions, concave or convex, both solutions having similar energy and the
data term being unable to disambiguate them.

Figure 7 shows a more detailed analysis of the bottom face in figure 6. The solu-
tion of the shape regularisation scheme agrees with the constraints (Fig. 7 left) even
though it picks the incorrect “concave” solution instead of the convex solution. This
is confirmed by looking at the shade rendering of the face under the occluded light
(see Fig. 7 middle and right). The shading regularisation scheme shows a smooth
surface (Fig. 7 middle) while the shape regularisation scheme (Fig. 7 right) shows
a clear artifact. This is expected since the shading regularisation does exactly that,
it finds the surface that minimises the variation of the shading when rendering the
shape with the occluded light. The extra knowledge of the missing light is exactly
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Fig. 6 Face sequence. Three different frames out of a 1000 frame face video sequence. The left
column shows the reconstruction when shadows are ignored. Middle and right columns show the
corresponding reconstructions after detecting and compensating for the shadow regions using the
shading regularisation scheme (middle) and shape regularisation scheme (right). Note the improve-
ment in the regions around the nose reconstruction where strong cast shadows appear (see arrows).
Note also how the shape regularisation scheme fails to reconstruct some boundary regions (see
circles). This behaviour is further explained in Fig. 7.

what the shape regularisation scheme is missing in order to make the right decision
and choose the convex solution.

A second facial performance capture using [19] is shown in figure 8. This time
the face is not painted, which implies an assumption of constant albedo chromatic-
ity. In order to cope with shadows, the shading regularisation scheme is used. We
observe that, despite the constant albedo deviations, e.g. the lips, the system suc-
cessfully captures fine details such as skin wrinkles.
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Fig. 7 Failure case of the shape regularisation scheme. The figures correspond to the bottom
face in Fig.6. Left shows characteristic curves describing the light occlusion on the right-side of
the face. Middle and right show the rendering of the shape under the occluded light using the
shading regularisation scheme (middle) and the shape regularisation scheme (right). The failure of
the shape regularisation scheme is clearly visible at the top right of the image.

2.7 Related work

The animation and capture of deformations is being explored in many fields, so
we provide a general explanation of their relevance in the context of the proposed
technique.

Texture Cues

White and Forsyth [48, 49] and Scholz et al[41] have presented work on using tex-
ture cues to perform the specific task of cloth capture. Their methods are based on
printing a special pattern on a piece of cloth and capturing video sequences of that
cloth in motion. The estimation of the cloth geometry is based on the observed de-
formations of the known pattern as well as texture cues extracted from the video
sequence. The techniques produce results of very good quality but are ultimately
limited by the requirement of printing a special pattern on the cloth which may not
be practical for a variety of situations. In the present work, we avoid this requirement
while producing detailed results.

Pilet et al [38] and Salzmann et al[39] proposed a slightly more flexible approach
where one uses the pattern already printed in a piece of cloth, by presenting it to the
system in a flattened state. Using sparse feature matching the pattern can be detected
in each frame of a video sequence. Due to the fact that detection occurs separately in
each frame, the method is quite robust to occlusions. However the presented results
dealt only with minor non-rigid deformations.
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Fig. 8 Face sequence. Acquisition of 3d facial expressions using [19] and the shadow process-
ing technique described in this paper. The shadows are processed with the shading regularisation
scheme. The full video sequence has more than a 1000 frames reconstructed.

Photometric Stereo

Photometric stereo [51] is one of the most successful techniques for surface recon-
struction from images. It works by observing how changing illumination alters the
image intensity of points throughout the object surface. These changes reveal the
local surface orientations. This field of local surface orientations can then be inte-
grated into a 3d shape. State of the art photometric-stereo allows uncalibrated light
estimation [29, 46] as well as multiple unknown albedos [14, 21]. As mentioned
previously, the main difficulty with applying photometric stereo to deforming ob-
jects lies in the requirement of changing the light source direction for each captured
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frame, while the object remains still. This is quite impractical when reconstructing
the 3d geometry of a moving object. We have shown how multispectral lighting al-
lows one to essentially capture three images (each with a different light direction)
in a single snapshot, thus making per-frame photometric reconstruction possible.

Coloured and Structured Lights

The earliest related works are also the most relevant to the method presented in this
chapter. The first reference to multispectral light for photometric stereo dates back
20 years to the work of Petrov [37]. Ten years later, Kontsevich et al [25] actually
demonstrated an algorithm for calibrating unknown color light sources and at the
same time computing the surface normals of an object in the scene. They verified
the theory on synthetic data and an image of a real egg. We use a simplified approach
for calibration and the same orientation-from-colour cue to eventually convert video
of un-textured cloth into a single surface with complex changing deformations.

More recently, the parameters needed to simulate realistic cloth dynamics were
measured in video by projecting explicitly structured horizontal light stripes onto
material samples under static and dynamic conditions [5]. This system measured
the edges and silhouette mismatches present in real vs. simulated sequences. Many
researchers have utilised structured lighting, and Gu et al [16] even used colour, al-
though their method is mostly for storing and manipulating acquired surface models
of shading and geometry. Weise et al[47] is the current state-of-the-art for structured
light and has some advantages in terms of absolute 3d depth, but at the expense of
both spatial and temporal sampling, e.g. 17 Hz compared to our 60 Hz (or faster,
limited only by the camera used). Zhang et al[53] is a nice complete system also
with structured lighting that applies to face models and videos. Sand et aldispensed
with special lighting but leveraged motion capture and automatic silhouettes to de-
form a human body template [40]. Our technique, on the other hand, expects no
prior models of the cloth being reconstructed.

Shadows in Photometric Stereo

One way of characterising photometric stereo methods is based on the number of
different lights required and how they cope with highlights or shadows.

A minimum of 3 lights is required to perform photometric stereo with no extra as-
sumptions [51], and only 2 lights with the additional assumption of constant albedo
[35]. Whenever more lights are available, the light visibility problem becomes a la-
belling problem where each point on the surface has to be assigned to the correct set
of lights in order to successfully reconstruct the surface.

For objects with constant albedo, [11] used a Rank-2 constraint to detect surfaces
illuminated by only 2 lights. In the case of general albedo, every point on the surface
has to be visible in at least 3 images. A 4-light photometric stereo setup was pro-
posed in [34], where light occlusion was detected by checking the consistency of all
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the possible triplets of lights. The work by [52] was able to detect light occlusions
in a 4-light setup and simply treat them as outliers. In [2] a similar algorithm to [34]
is presented using a 4-light coloured photometric stereo approach.

In the recent work by [6], an iterative MRF formulation is proposed for detecting
light occlusion and exploiting it as a surface integration constraint. However, the
algorithm also requires a minimum of 4 lights and is targeted for setups with a large
number of lights.

3 Multi-view Photometric Stereo

The motivation for the method presented in this section is digital archiving of 3d ob-
jects, a key area of interest in cultural heritage preservation. While laser range scan-
ning is one of the most popular techniques, it has a number of drawbacks, namely
the need for specialised, expensive hardware and also the requirement of exclusive
access to an object for significant periods of time. Also, for a large class of shiny
objects such as porcelain or glazed ceramics, 3d scanning with lasers is challenging
[27]. Recovering 3d shape from photographic images is an efficient, cost effective
way to generate accurate 3d scans of objects.

Several solutions have been proposed for this long studied problem. When the
object is well textured its shape can be obtained by densely matching pixel locations
across multiple images and triangulating (see previous chapter or [42] for a recent
review), however the results typically exhibit high frequency noise.

For non textured objects photometric stereo is a well established alternative that
can provide very detailed reconstructions. One of the biggest drawbacks of photo-
metric stereo methods is the fact that they can only provide single-viewpoint, 2.5D
depth-map reconstructions.

In this section we describe an elegant and practical method for acquiring a com-
plete and accurate 3d model from a number of images taken around the object,
captured under changing light conditions (see Fig. 9). The changing (but otherwise
unknown) illumination conditions uncover the fine geometric detail of the object
surface which is obtained by a generalised photometric stereo scheme.

The object’s reflectance is assumed to follow Lambert’s law, i.e. points on the
surface keep their appearance constant irrespective of viewpoint. The method can
however tolerate isolated specular highlights, typically observed in glazed surfaces
such as porcelain. We also assume that a single, distant light-source illuminates
the object and that it can be changed arbitrarily between image captures. Finally, it
is assumed that the object can be segmented from the background and silhouettes
extracted automatically.
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Fig. 9 Our acquisition setup. The object is rotated on a turntable in front of a camera and a point
light-source. A sequence of images are captured while the light-source changes position between
consecutive frames. No knowledge of the camera or light-source positions is assumed.

3.1 Related work

The method presented here draws inspiration from the recent work of [29] where
the authors explore the possibility of using photometric stereo with images from
multiple views, when correspondence between views is not initially known. Picking
an arbitrary viewpoint as a reference image, a depth-map with respect to that view
serves as the source of approximate correspondences between frames. This depth-
map is initialised from a Delaunay triangulation of sparse 3d features located on
the surface. Using this depth-map, their algorithm performs a photometric stereo
computation obtaining normal directions for each depth-map location. When these
normals are integrated, the resulting depth-map is closer to the true surface than
the original. The paper presents high quality reconstructions and gives a theoretical
argument justifying the convergence of the scheme. The method however relies on
the existence of distinct features on the object surface which are tracked to obtain
camera motion and initialise the depth-map. In the class of textureless objects we
are considering, it may be impossible to locate such surface features and indeed our
method has no such requirement. Also the surface representation is still depth-map
based and consequently the models produced are 2.5D.

A similar approach of extending photometric stereo to multiple views and more
complex BRDFs was presented in [36] with the limitation of almost planar 2.5D
reconstructed surfaces. Our method is based on the same fundamental principle of
bootstrapping photometric stereo with approximate correspondences, but we use
a general volumetric framework which allows complete 3d reconstructions from
multiple views.

Quite related to this idea is the work of [3] and [33] where photometric stereo in-
formation is combined with 3d range scan data. In [3] the photometric information is
simply used as a normal map texture for visualisation purposes. In [33], a very good
initial approximation to the object surface is obtained using range scanning tech-
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nology, which however is shown to suffer from high-frequency noise. By applying
a fully calibrated 2.5D photometric stereo technique, normal maps are estimated
which are then integrated to produce an improved, almost noiseless surface geom-
etry. Our acquisition technique is different from [33] in the following respects: (1)
we only use standard photographic images and simple light sources, (2) our method
is fully uncalibrated- all necessary information is extracted from the object’s con-
tours and (3) we completely avoid the time consuming and error prone process of
merging 2.5D range scans.

The use of the silhouette cue is inspired by the work of [45] where a scheme
for the recovery of illumination information, surface reflectance and geometry is
described. The algorithm described makes use of frontier points, a geometrical fea-
ture of the object obtained by the silhouettes. Frontier points are points of the visual
hull where two contour generators intersect and hence are guaranteed to be on the
object surface. Furthermore the local surface orientation is known at these points,
which makes them suitable for various photometric computations such as extrac-
tion of reflectance and illumination information. Our method generalises the idea
by examining a much richer superset of frontier points which is the set of contour
generator points. We overcome the difficulty of localising contour generators by a
robust random sampling strategy. The price we pay is that a considerably simpler
reflectance model must be used.

Although solving a different type of problem, the work of [23] is also highly re-
lated mainly because the class of objects addressed is similar to ours. While the en-
ergy term defined and optimised in their paper bears strong similarity to ours, their
reconstruction setup keeps the lights fixed with respect to the object so in fact an
entirely different problem is solved and hence a performance comparison between
the two techniques is difficult. However the results presented in [23] at first glance
seem to be lacking in detail especially in concavities, while our technique consid-
erably improves on the visual hull. Finally, there is a growing volume of work on
using specularities for calibrating photometric stereo (see [10] for a detailed litera-
ture survey). This is an example of a different cue used for performing uncalibrated
photometric stereo on objects of the same class as the one considered here. However
methods proposed have so far only been concerned with the fixed view case.

3.2 Algorithm

The method presented here reconstructs the complete geometry of 3d objects by
exploiting the powerful silhouette and shading cues. We modify classic photomet-
ric stereo and cast it in a multi-view framework where the camera is allowed to
circumnavigate the object and illumination is allowed to vary. Firstly, the object’s
silhouettes are used to recover camera motion using the technique presented in [18],
and via a novel robust estimation scheme they allow us to accurately estimate the
light directions and intensities in every image.
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Secondly, the object surface, which is parametrised by a mesh and initialised
from the visual hull, is evolved until its predicted appearance matches the captured
images. The advantages of our approach are the following:

• It is fully uncalibrated: no light or camera pose calibration object needs to be
present in the scene. Both camera pose and illumination are estimated from the
object’s silhouettes.

• The full 3d geometry of a complex, textureless multi-albedo object is accurately
recovered, something not previously possible by any other method.

• It is practical and efficient as evidenced by our simple acquisition setup.

3.2.1 Robust estimation of light-sources from the visual hull

For an image of a lambertian object with varying albedo, under a single distant light
source, and assuming no self-occlusion, each surface point projects to a point of
intensity given by:

c = lT ρn, (15)

where l is a 3d vector directed towards the light-source and scaled by the light-source
intensity, n is the surface unit normal at the object location and ρ is the albedo at
that location. Equation (15) provides a single constraint on the three coordinates of
the product ρl. Then, given three points x1,x2,x3 with an unknown but equal albedo
ρ , their normals (non co-planar) n1,n2,n3, and the corresponding three image in-
tensities i1, i2, i3, we can construct three such equations that can uniquely determine
ρl as

ρ l = [n1 n2 n3]
−1




c1
c2
c3


 . (16)

For multiple images, these same three points can provide the light directions and
intensities in each image up to a global unknown scale factor ρ . The problem is
then how to obtain three such points.

Our approach is to use the powerful silhouette cue. The observation on which
this is based is the following: when the images have been calibrated for camera mo-
tion, the object’s silhouettes allow the construction of the visual hull [26], which is
defined as the maximal volume that projects inside the silhouettes (see Fig. 10). A
fundamental property of the visual hull is that its surface coincides with the real sur-
face of the object along a set of 3d curves, one for each silhouette, known as contour
generators [8]. Furthermore, for all points on those curves, the surface orientation
of the visual hull surface is equal to the orientation of the object surface. There-
fore if we could detect points on the visual hull that belong to contour generators
and have equal albedo, we could use their surface normal directions and projected
intensities to estimate lighting. Unfortunately contour generator points with equal
albedo cannot be directly identified within the set of all points of the visual hull.
Light estimation however can be viewed as robust model fitting where the inliers
are the contour generator points of some constant albedo and the outliers are the
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Fig. 10 The visual hull for light estimation. The figure shows a 2d example of an object which
is photographed from two viewpoints. The visual hull (gray quadrilateral) is the largest volume
that projects inside the silhouettes of the object. While the surface of the visual hull is generally
quite far from the true object surface, there is a set of points where the two surfaces are tangent
and moreover, share the same local orientation (these points are denoted here with the four dots
and arrows). In the full 3d case, three points with their surface normals, are enough to fix an
illumination hypothesis, against which all other points can be tested for agreement. This suggests
a robust random sampling scheme, described in the main text, via which the correct illumination
can be obtained.

rest of the visual hull points. The albedo of the inliers will be the dominant albedo,
i.e. the colour of the majority of the contour generator points. One can expect that
the outliers do not generate consensus in favour of any particular illumination model
while the inliers do so in favour of the correct model. This observation motivates us
to use a robust RANSAC scheme [13] to separate inliers from outliers and estimate
illumination direction and intensity. The scheme can be summarised as follows:

1. Pick three points on the visual hull and from their image intensities and normals
estimate an illumination hypothesis for ρ l.

2. Every point on the visual hull xm will now vote for this hypothesis if its predicted
image intensity is within a given threshold τ of the observed image intensity cm,
i.e. ∣∣ρlT ·nm− cm

∣∣ < τ, (17)

where τ allows for quantisation errors, image noise, etc.
3. Repeat 1 and 2 a set number of times always keeping the illumination hypothesis

with the largest number of votes.

The shape of the actual function being optimised by the RANSAC scheme de-
scribed above was explored graphically for a porcelain object in Fig. 11. The num-
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Fig. 11 Shape of illumination consensus. For different illumination configurations we have plot-
ted the consensus as a function of light direction. For each direction consensus has been maximised
with respect to light intensity. Red values denote big consensus. The shape of the maxima of this
cost function as well as the lack of local optima implies a stable optimisation problem. Top: 6 dif-
ferent illuminations of a single albedo object. Bottom: 4 different illuminations of a multi-albedo
object. Although the presence of multiple albedos degrades the quality of the light estimation (the
peak is broader), it is still a clear single optimum.

ber of points voting for a light direction (maximised with respect to light intensity)
was plotted as a 2d function of latitude and longitude of the light direction. These
graphical representations, obtained for six different illuminations, show the lack of
local optima and the presence of clearly defined maxima.

This simple method can also be extended in the case where the illumination is
kept fixed with respect to the camera for K frames. This corresponds to K illumi-
nation vectors R1l, . . . ,RK l where Rk are 3×3 rotation matrices that rotate the fixed
illumination vector l with respect to the object. In that case a point on the visual hull
xm with normal nm will vote for l if it is visible in the k-th image where its intensity
is cm,k and ∣∣ρ(Rkl)T ·nm− cm,k

∣∣ < τ. (18)

A point is allowed to vote more than once if it is visible in more than one image.
Even though in theory the single image case suffices for independently recov-

ering illumination in each image, in our acquisition setup light can be kept fixed
over more than one frame. This allows us to use the extended scheme in order to
further improve our estimates. A performance comparison between the single view
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and the multiple view case is provided through simulations with synthetic data in
the experiments section.

An interesting and very useful byproduct of the robust RANSAC scheme is that
any deviations from our assumptions of a Lambertian surface of uniform albedo
are rejected as outliers. This provides the light estimation algorithm with a degree
of tolerance to sources of error such as highlights or local albedo variations. The
next section describes the second part of the algorithm which uses the estimated
illumination directions and intensities to recover the object surface.

3.2.2 Fusing multiple views

Having estimated the distant light-source directions and intensities for each image
our goal is to find a closed 3d surface that is photometrically consistent with the im-
ages and the estimated illumination, i.e. its predicted appearance by the lambertian
model and the estimated illumination matches the images captured. To achieve this
we use an optimisation approach where a cost function penalising the discrepancy
between images and predicted appearance is minimised.

Our algorithm optimises a surface S that is represented as a mesh with vertices
x1 . . .xM, triangular faces f = 1 . . .F and corresponding albedo ρ1, . . . ,ρF . We de-
note by nf and A f the mesh normal and the surface area at face f . Also let c f ,k be
the intensity of face f on image k and let the set V f be the set of images (subset of
{1, . . . ,K}) from which face f is visible. The light direction and light intensity of
the k-th image will be denoted by lk.

We use a scheme similar to the ones used in [23, 46] where the authors introduce
a decoupling between the mesh normals n1 . . .nF, and the direction vectors used in
the Lambertian model equation. We call these new direction vectors v1 . . .vF pho-
tometric normals, and they are independent of the mesh normals. The minimisation
cost is then composed of two terms, where the first term Ev links the photometric
normals to the observed image intensities:

Ev
(
v1,...,F,ρ1,...,F ;x1,...,M

)
=

F

∑
f =1

∑
k∈V f

(
lkT ρ f vf− c f ,k

)2
, (19)

and the second term Em brings the mesh normals close to the photometric normals
through the following equation:

Em
(
x1,...,M;v1,...,F

)
=

F

∑
f =1
‖nf−vf‖2 A f . (20)

This decoupled energy function is optimised by iterating the following two steps:

1. Photometric normal optimisation. The vertex locations are kept fixed while
Ev is optimised with respect to the photometric normals and albedos. This is
achieved by solving the following independent minimisation problems for each
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face f :
vf,ρ f = argmin

v,ρ ∑
k∈V f

(
lkT ρv− c f ,k

)2
s.t. ||v||= 1. (21)

2. Vertex optimisation.The photometric normals are kept fixed while Em is opti-
mised with respect to the vertex locations using gradient descent.

These two steps are interleaved until convergence which takes about 20 steps for the
sequences we experimented with. Typically each integration phase takes about 100
gradient descent iterations. Note that for the first step described above, i.e. evolving
the mesh until the surface normals converge to some set of target orientations, a va-
riety of solutions is possible. A slightly different solution to the same geometric op-
timisation problem has recently been proposed in [33], where the target orientations
are assigned to each vertex, rather than each face as we do here. That formulation
lends itself to a closed-form solution with respect to the position of a single vertex.
An iteration of these local vertex displacements yields the desired convergence. As
both formulations offer similar performance, the choice between them should be
made depending on whether the target orientations are given on a per vertex or per
facet basis.

The visibility map V f is a set of images in which we can measure the intensity
of face f . It excludes images in which face f is occluded using the current surface
estimate as the occluding volume as well as images where face f lies in shadow.
Shadows are detected by a simple thresholding mechanism, i.e. face f is assumed
to be in shadow in image k if c f ,k < τshadow where τshadow is a sufficiently low
intensity threshold. Due to the inclusion of a significant number of viewpoints in
V f , (normally at least 4) the system is quite robust to the choice of τshadow. For all
the experiments presented here, the value τshadow = 5 was used (for intensities in the
range 0-255). As for the highlights, we also define a threshold τhighlight such as a face
f is assumed to be on a highlight in image k if c f ,k > τhighlight . In order to compute
τhighlight need to distinguish between single albedo objects and multi-albedo objects.
Single albedo objects are easily handled since the light calibration step gives us the
light intensity. Hence, under the Lambertian assumption, no point on the surface
can produce an intensity higher than the light intensity, i.e. τhighlight = ||ρ l||. In the
multi-albedo case ρ can also vary, and it is likely that the albedo picked by the robust
light estimation algorithm is not the brightest one present on the object. As a result,
we prefer to use a global threshold to segment the highlights on the images. It is
worth noting that this approach works for the porcelain objects because highlights
are very strong and localised, so just a simple sensor saturation test is enough to find
them, i.e. τhighlight = 254.

3.3 Experiments

The setup used to acquire the 3d model of the object is quite simple (see Fig. 9). It
consists of a turntable, onto which the object is mounted, a 60W halogen lamp and



Practical 3d reconstruction based on Photometric Stereo 27

Capture images of object.
Extract silhouettes.
Recover camera motion and compute visual hull.
Estimate light directions and intensities in every image (Section 3.2.1).
Initialise a mesh with vertices x1 . . .xM and faces f = 1 . . .F to the object’s visual hull.
while mesh-not-converged do

Optimise Ev with respect to v1 . . .vF (19).
Optimise Em with respect to x1 . . .xM (20).

end while

Fig. 12 The multi-view reconstruction algorithm.

a digital camera. The object rotates on the turntable and 36 images (i.e. a constant
angle step of 10 degrees) of the object are captured by the camera while the posi-
tion of the lamp is changed. In our experiments we have used three different light
positions which means that the position of the lamp was changed after twelve, and
again after twenty-four frames. The distant light source assumptions are satisfied if
an object of 15cm extent is placed 3-4m away from the light.

The algorithm was tested on five challenging shiny objects, two porcelain fig-
urines shown in Fig. 13, two fine relief Chinese Qing-dynasty porcelain vases shown
in Fig. 14, and one textured Jade Buddha figurine in Fig. 15. Thirty-six 3456×2304
images of each of the objects were captured under three different illuminations.
The object silhouettes were extracted by intensity thresholding and were used to
estimate camera motion and construct the visual hull (second row of Fig. 13). The
visual hull was processed by the robust light estimation scheme of Section 3.2.1
to recover the distance light-source directions and intensities in each image. The
photometric stereo scheme of section 3.2.2 was then applied. The results in Fig. 14
show reconstructions of porcelain vases with very fine relief. The reconstructed re-
lief (especially for the vase on the right) is less than a millimetre while their height
is approximately 15-20 cm. Figure 15 shows a detailed reconstruction of a Buddha
figurine made of polished Jade. This object is actually textured, which implies clas-
sic stereo algorithms could be applied. Using the camera motion information and the
captured images, a state-of-the-art multi-view stereo algorithm [17] was executed.
The results are shown in the second row of Figure 15. It is evident that, while the
low frequency component of the geometry of the figurine is correctly recovered, the
high frequency detail obtained by [17] is noisy. The reconstructed model appears
bumpy even though the actual object is quite smooth. Our results do not exhibit
surface noise while capturing very fine details such as surface cracks.

To quantitatively analyse the performance of the multi-view photometric stereo
scheme presented here with ground truth, an experiment on a synthetic scene was
performed (Fig. 16). A 3d model of a sculpture (digitised via a different technique)
was rendered from 36 viewpoints with uniform albedo and using the Lambertian
reflectance model. The 36 frames were split into three sets of 12 and within each set
the single distant illumination source was held constant. Silhouettes were extracted
from the images and the visual hull was constructed. This was then used to estimate
the illumination direction and intensity as described in Section 3.2.1. In 1000 runs of
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(a) Input images.

(b) Visual hull reconstruction.

(c) Our results.

(d) Close up views of porcelains.

(e) Close up views of reconstructed models.

Fig. 13 Reconstructing porcelain figurines. Two porcelain figurines reconstructed from a se-
quence of 36 images each (some of the input images are shown in (a)). The object moves in front
of the camera and illumination (a 60W halogen lamp) changes direction twice during the image
capture process. (b) shows the results of a visual hull reconstruction while (c) shows the results
of our algorithm. (d) and (e) show detailed views of the figurines and the reconstructed models
respectively.
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Fig. 14 Reconstructing Chinese Qing-dynasty porcelain vases.Top: sample of input images.
Bottom: proposed method. The resulting surface captures all the fine details present in the images,
even in the presence of strong highlights.

Fig. 15 Reconstructing coloured jade. Left: Two input images. Middle: model obtained by
multi-view stereo method from [17]. Right: proposed method. The resulting surface is filtered
from noise while new high frequency geometry is revealed (note the reconstructed surface cracks
in the middle of the figurine’s back).
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Fig. 16 Synthetic evaluation. Left: the accuracy of the algorithm was evaluated using an image
sequence synthetically generated from a 3d computer model of a sculpture. This allowed us to
compare the quality of the reconstructed model against the original 3d model as well as measure
the accuracy of the light estimation. The figure shows the reconstruction results obtained, below
the images of the synthetic object. The mean distance of all points of the reconstructed model from
the ground truth was found to be about 0.5mm if the bounding volume’s diagonal is 1m. Right: The
figure shows the effect of varying the length of the frame subsequences that have constant light.
The angle between the recovered light direction and ground truth has been measured for 1000 runs
of the RANSAC scheme for each number of frames under constant lighting. With just a single frame
per illumination the algorithm achieves a mean error of 1.57 degrees with a standard deviation of
0.88 degrees. With 12 frames sharing the same illumination the mean error drops to 0.75 degrees
with a standard deviation of 0.41 degrees.

the illumination estimation method for the synthetic scene, the mean light direction
estimate was 0.75 degrees away from the true direction with a standard deviation
of 0.41 degrees. The model obtained by our algorithm was compared to the ground
truth surface by measuring the distance of each point on our model from the closest
point in the ground truth model. This distance was found to be about 0.5mm when
the length of the biggest diagonal of the bounding box volume was defined to be
1m. Even though this result was obtained from perfect noiseless images it is quite
significant since it implies that any loss of accuracy can only be attributed to the vi-
olations of our assumptions rather than the optimisation methods themselves. Many
traditional multi-view stereo methods would not be able to achieve this due to the
strong regularisation that must be imposed on the surface. By contrast our method
requires no regularisation when faced with perfect noiseless images.

Finally, we investigated the effect of the number of frames during which illu-
mination is held constant with respect to the camera frame. Our algorithm can in
theory obtain the illumination direction and intensity in every image independently.
However keeping the lighting fixed over two or more frames, and supplying that
knowledge to the algorithm can significantly improve estimates. The next experi-
ment was designed to test this improvement by performing a light estimation over
K images where the light has been kept fixed with respect to the camera. The re-
sults are plotted in Figure 16 right and show the improvement of the accuracy of
the recovered lighting directions as K increases from 1 to 12. The metric used was
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the angle between the ground truth light direction and the estimated light direction
over 1000 runs of the robust estimation scheme. For K = 1 the algorithm achieves
a mean error of 1.57 degrees with a standard deviation of 0.88 while for K = 12 it
achieves 0.75 degrees with a standard deviation of 0.41 degrees. The decision for
selecting a value for K should be a consideration of the tradeoff between practicality
and maximising the total number of different illuminations in the sequence which is
M/K where M is the total number of frames.
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