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Abstract. Shadows are one of the most significant difficulties of the
photometric stereo method. When four or more images are available, lo-
cal surface orientation is overdetermined and the shadowed pixels can
be discarded. In this paper we look at the challenging case when only
three images under three different illuminations are available. In this
case, when one of the three pixel intensity constraints is missing due
to shadow, a 1 dof ambiguity per pixel arises. We show that using in-
tegrability one can resolve this ambiguity and use the remaining two
constraints to reconstruct the geometry in the shadow regions. As the
problem becomes ill-posed in the presence of noise, we describe a regular-
ization scheme that improves the numerical performance of the algorithm
while preserving data. We propose a simple MRF optimization scheme
to identify and segment shadow regions in the image. Finally the paper
describes how this theory applies in the framework of color photomet-
ric stereo where one is restricted to only three images. Experiments on
synthetic and real image sequences are presented.

1 Introduction

Photometric stereo is a well established 3d reconstruction technique based on the
powerful shading cue. A sequence of images (typically three or more) of a 3d scene
are obtained from the same viewpoint and under varying illumination. From the
intensity variation in each pixel one can estimate the local orientation of the
surface that projects onto that pixel. By integrating all these surface orientations
a very detailed estimate of the surface geometry can be obtained. As any other
reconstruction method, photometric stereo faces several difficulties when faced
with real images. One of the most important of these difficulties is the frequent
presence of shadows in an image. No matter how careful the arrangement of
the light sources, shadows are an almost unavoidable phenomenon, especially
in objects with complex geometries. This paper investigates the phenomenon of
shadows in photometric stereo with three light sources.

Shadows in photometric stereo have been the topic of a number of papers
[1-3]. Most papers assume we are given four or more images under four different
illuminations. This over-determines the local surface orientation and albedo (3
degrees of freedom) which implies that we can use the residual of some least
squares solution, to determine whether shadowing has occurred. However when
we are only given three images there are no spare constraints against which to
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test our hypothesis. Therefore the problem of detecting shadows becomes more
difficult. Furthermore, when a pixel is in shadow in one of the three images most
methods simply discard it. We show how one can use the remaining two im-
age intensity measurements to estimate the surface geometry inside the shadow
region. The solution we propose is based on enforcing (1) integrability of the
gradient field, as well as (2) smoothness in the recovered intensity of the missing
channel.

Using photometric stereo on just three images may seem like an unreason-
ably hard restriction. There is however a particular situation when only three
images are available. This technique is known as color photometric stereo [4]
and it uses three light sources with different light spectra. When the scene is
photographed with a color camera, the three color channels capture three differ-
ent photometric stereo images. Because shape acquisition is performed on each
frame independently, the method can be used on video sequences without hav-
ing to change illumination between frames [5]. In this way we can capture the
3D shape of deforming objects such as cloth, or human faces. Since the method
is constrained to operate only on three images it is an ideal application of the
theory we present here. Summarizing, the two main contributions of this paper
are the following:

— We show how to exploit image regions in photometric stereo where one of the
three images is in shadow. A geometric formulation of the problem is given
where a set of point-to-point and point-to-line distances are minimized under
the integrability condition.

— We develop a regularization scheme that makes the optimization problem
well posed while not suppressing the data. This scheme is successfully vali-
dated within the color photometric stereo technique of [5].

1.1 Previous work

A vast literature exists on the topic of photometric stereo. Its applications range
from 3D reconstruction [6], medical imaging [7] or cloth modeling [5]. One of the
main limitations of photometric stereo is the number of different lights required
and how the algorithm copes with highlights or shadows.

A minimum of 3 lights is required to perform photometric stereo with no
extra assumptions [6], and only 2 lights with the additional assumption of con-
stant albedo [8]. Whenever more lights are available, the light visibility problem
becomes a labeling problem where each point on the surface has to be assigned
to the correct set of lights in order to successfully reconstruct the surface.

For objects with constant albedo, [3] used a Rank-2 constraint to detect
surfaces illuminated by only 2 lights. In the case of general albedo, every point
on the surface has to be visible in at least 3 images. A 4-light photometric stereo
setup was proposed in [9], where light occlusion was detected by checking the
consistency of all the possible triplets of lights. The work by [10] was able to
detect light occlusions in a 4-light setup and simply treat them as outliers. In [1]
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a similar algorithm to [9] is presented using a 4-light colored photometric stereo
approach.

In the recent work by [2], an iterative MRF formulation is proposed for
detecting light occlusion and exploiting it as a surface integration constraint.
However, the algorithm also requires a minimum of 4 lights and is targeted for
setups with a large number of lights.

In this paper we propose a novel solution for 3-light photometric stereo with
shadows and varying albedo. We are able to detect and exploit photometric
stereo constraints with only two lights while the constant albedo constraint is
relaxed into a more practical smoothly varying albedo constraint.

2 Three-source photometric stereo with shadows

In classic three-source photometric stereo we are given three images of a scene,
taken from the same viewpoint, and illuminated by three distant light sources.
The light sources emit the same light frequency spectrum from three different
non-coplanar directions. We will assume an orthographic camera (with infinite
focal length) for simplicity, even though the extension to the more realistic pro-
jective case is straightforward [11]. In the case of orthographic projection one
can align the world coordinate system so that the xy plane coincides with the
image plane while the z axis corresponds to the viewing direction. The surface
in front of the camera can then be parameterized as a height function Z(z,y).
If Z, and Z, are the two partial derivatives of Z one can define the vector

n=—— 1 (z,7,-1)"

22+ Z2+1

that is locally normal to the surface at (x,y). Fori = 1...3 let ¢;(x,y) denote the
pixel intensity of pixel (z,y) in the i-th image. We assume that in the i-th image
the surface point (a: y Z(x,y) )T is illuminated by a distant light source whose
direction is denoted by the vector 1; and whose spectral distribution is E (). We
also assume that the surface point absorbs incoming light of various wavelengths
according to the reflectance function R (x,y, \). Finally, let the response of the
camera sensor at each wavelength be given by S (). Then the pixel intensity
c¢i(z,y) is given by

i) = (n) [ EQ) RG0S () dr 1)

The value of this integral is known as the surface albedo of point (m y Z(x,y) )T
We can define the albedo-scaled normal vector

b:n/E(A)R(x,y,A)S(A)d)\

so that (1) becomes a simple dot product
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Photometric stereo methods use the linear constraints of (2) to solve for b in a
least squares sense. From this they obtain the partial derivatives of the height
function which are integrated to produce the function itself. In three-source
photometric stereo, when the point is not in shadow with respect to all three
lights, we measure three positive intensities ¢; each of which gives a constraint on
b. If we write L = [1; 1, 13]
one solution which is given by

and ¢ = [cl Co 03]T then the system has exactly

L c. (3)

If the point however is in shadow, say in the i-th image, then the measurement of
¢; cannot be used as a constraint. Since each equation (2) describes a 3D plane,
the intersection of the two remaining constraints is a 3D line. If e; is the i-th
column of the 3 x 3 identity matrix and D; is the identity matrix with a zero in
the i-th position in the diagonal, the possible solutions for b are

L™ 'D;c+ pLte;. (4)

where p is a scalar parameter. This parameter represents the value that ¢; would
have, had the point not been in shadow in the i-th image.

3 Projection to 2D space

At this point it is useful to project the scaled normals b; into 2D space with
coordinates p and gq. We define the following operator: P[x] = (x1/x3, x2/x3).
Let the scaled normal b of surface point (z,y, Z(z,y)) project to point P[b] =
(p,q). Then the coordinates p and ¢ are equal to the two partial derivatives Z,
and Z, respectively. According to the image constraints and assuming no noise
in the data, we can have one of the following three cases:

1. The surface point is in shadow in two or more images. In this case there is
no constraint in P[b] from the images.

2. The surface point is not in shadow in any of the three images. In this case
(p,q) coincides with P [L~'c] = (P, Q).

3. The surface point is in shadow in exactly one image, say the i-th. In this case
(p,q) must lie on the line that joins P [L™'D;c] = (P,Q) and P [L™'e;] =

(Pe(“, S’). We call this line the shadow line of the shaded pixel.

Note that for all pixels j that are occluded under the i-th image, the correspond-
x

ing points (ﬁj,@j) are on the line described by equation lzT y | = 0. Also,
1

the shadow lines of all those pixels intersect at the point (Pe(i), 9)

Now in the presence of noise in the data ¢, cases 2 and 3 above do not hold
exactly as points (P, Q) and (P,Q) are corrupted: The point (p,q) is slightly
different from (P, Q) for unoccluded pixels, and (ﬁ, @) is not exactly on the line
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Fig. 1. Geometry of shadowed pixels. The points (p;,q;) (dark dots) represent the
partial derivatives of the height function at pixel j. For each point (pj;,q;) there is a
corresponding data point (white dot). Pixel 2 is unoccluded and hence (p2, g2) must be
as close as possible to its data point (P2, Q2). Pixel 1 however is occluded so (p1,q1)
must be as close as possible to its shadow line. This is the line joining its data point

(?1,61) and the intersection point (Pe(i)7 2”)

joining (p,q) and (Pe(i)7Qéi)). Figure 1 shows the configuration for six pixels

where pixel 1 is under shadow in the i-th image while pixel 2 is not in shadow
in any image.

3.1 Integrability condition

Note that the (p,q) coordinates are not independent for each pixel as they rep-
resent the partial derivatives of a scalar field and as a result they must satisfy
an integrability condition. By assuming that the height function is a continuous
piecewise polynomial, the integrability condition takes the form of a convolution
between p and ¢. If for example Z(x,y) is a linear interpolation between height
values at pixel centers Z(i,j) then we can express integrability as

p(i+1,j) _p(iv.j) = Q(i’j+1) _Q(imj)'

Our strategy is to obtain values (p, q) for each pixel that minimize the discrep-
ancy between the noisy data and the model while satisfying the integrability
condition. This is discussed in the following section.

4 Integrating in the shadow regions

As mentioned, under noise in the image data c, the 2D points (P, Q) and (ﬁ, @)
are not perfectly consistent with the model. For non-shadowed pixels, difference
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between model and data can be measured by the point-to-point square difference
term

E=(p-P) +@-Q)"
In the case of the shadowed pixels however we have a choice of possible ways
to quantify the non-collinearity of (p, q), (ﬁ, @) and (Pe(i), S)) Ideally, since
(P, @) is the point that contains the noise, we should be measuring the distance
from (ﬁ, @) to the intersection of the line joining (p,q) and (Pe(i)7 EJ)) with
p

the line 1] [ ¢ | = 0. This leads to the following distance term
1

2

1P, @) =P [(1 = mi[) b]|

where m; is the i-th vector of L=!. The expression inside the square is non
linear with respect to p and gq. We therefore choose to minimize the distance
from (p, q) to the line joining (ﬁ, @) and (Pe(l), 9). This distance is shown in

the red dotted line in figure 1. The term this corresponds to is

(@-@) (p-r) - (P-2%) (a- @)
552) = — N2 — N2
(F )+ (@ a)
and here the quantity being squared is linear with respect to p and q.
So we now assume we are given a labeling of pixels into all the possible types

of shadow. Let S contain all non-shadowed pixels while S; contains pixels shaded
in the i-th image. Our cost function becomes

S &+ & E Y E

JES JEST JESs JESs

which is a set of quadratic terms in p and ¢. Finding the minimum of this quantity
subject to the integrability condition is a constrained linear least squares problem
that can be solved by a variety of methods [12].

Figure 2 shows this idea applied in practice on synthetic data. This experi-
ment indicates that the overall geometry seems to be reconstructed quite well in
shadowed regions, provided that these are surrounded by unshaded pixels. The
latter act as boundary conditions for the shadowed regions and give the prob-
lem a unique solution. Furthermore it also provides evidence that in its present
form the problem is ill-conditioned, especially in larger shadowed regions. The
following section sheds more light on this and describes our proposed remedy.

4.1 Regularization

The linear least squares optimization framework described in section 2 when
executed in practice shows signs of ill-posedness in the presence of noise. This is
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demonstrated in the synthetic case of figure 2 where three images of a sphere have
been generated. Three shadow regions corresponding to each of the three lights
have been introduced. Even though the overall shape of the object is accurately
captured some characteristic ‘scratch’ artifacts are observed. These are caused
by the point-to-line distances which do not introduce enough constraints in the
cost function. The point (p, ¢) can move significantly in a direction parallel to the
corresponding shadow line only to gain a slight decrease in the overall cost. This
results in violent perturbations in the resulting height function that manifest
themselves as deep scratches running perpendicular to the shadow lines. The
solution to this is some type of regularization on the space of solutions. We have
two main requirements on the choice of regularizing criterion:

— The scheme must be consistent with the linear least squares framework. No
non-linear constraints can be enforced.
— It must suppress noise while preserving as much of the data as possible.

One possible choice for a regularization criterion is minimizing the Laplacian
of the height field V2z. This is known to have good noise reduction properties
and to produce smooth well behaved surfaces with low curvature. However, the
Laplacian is isotropic so it tends to indiscriminately smooth along all possible
directions. See [13] for a good discussion of anisotropic alternatives to Laplacian
filtering in the context of gradient field integration. In the case of our problem,
we would like to enforce regularization in (p, q) space along the direction of the
shadow line for each shadowed pixel. Fortunately there is an efficient way of
achieving this that satisfies both our goals. For this we need to modify our point
to line distance term to the following:

Al — A\ 2 _ N\ 2

EW = (p—wP—(l—w)Pe(’)) + (q—wQ—(l—w)Qg)) . (5)
This introduces a new variable w per shaded pixel, that specifies a location along
the shadow line of that pixel. The term is still quadratic with respect to p, ¢ and
w but this now allows us to regularize the solution in a meaningful way. The
variable w is related to parameter p of (4) by

e; L7'D;c
w= .
es L 1D;c+ pej L~ lte;

(6)

As we mentioned, p represents the value of ¢; that would have been measured
had the pixel not been in shadow in that image. We propose putting a cost on the
length of Vw inside the shaded regions. As w is a proxy for p, this corresponds to
introducing smoothness in 1] b. We can therefore eliminate the scratch artifacts
while letting b have variability in the directions perpendicular to 1;. Figure 2
shows that this scheme works quite well in practice.

Throughout all of the previous discussion we have assumed knowledge of la-
beling of pixels according to shadows. The next section discusses how we propose
to segment shadow regions in the image.
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4.2 Segmenting shadow regions

It is known [1] that in photometric stereo with four or more images one can
detect shadows by computing the scaled normal that satisfies the constraints in
a least squares sense. If the residual of this least squares calculation is high, this
implies that the pixel is either in a shadow or in a highlight. With three images
however this becomes impossible as the three constraints can always be satisfied
exactly, leaving a residual of zero. Recently, [2] proposed a graph-cut based
scheme for labeling shadows in photometric stereo with four or more images.
Based on the constraint residual, they compute a cost for assigning a particular
shadow label to each pixel. This cost is then regularized in an MRF framework
where neighboring pixels are encouraged to have similar shadow labels. We
would like to use a similar framework but we must supply a different cost for
assigning a shadow label. The basic characteristic of a shadow region is that
pixel intensities inside it are dark. However this can also occur because of dark
surface albedo. To remove the albedo factor we propose to divide pixel intensities
with the magnitude of the intensity vector c¢. Our cost for deciding that a pixel
is occluded in the i-th image is ¢;/ |/c||. This still leaves the possibility that
we mistakenly classify a pixel whose normal is nearly perpendicular to the i-th
illumination direction 1;. However in that case the pixel is close to being in a self
shadow so the risk from misclassifying it is small. The cost for assigning a pixel
to the non-shadowed set is given by

V3 — min G

i el

We regularize these costs in an MRF framework under a Potts model pairwise
cost. This assigns a fixed penalty for two neighboring pixels being given different
shadow labels. The MRF is optimized using the Tree Reweighted message pass-
ing algorithm [14]. Figure 4 shows an example of applying our shadow region
segmentation to a real image.

5 Color photometric-stereo

It may seem that a photometric stereo scheme with three images is unnecessarily
restrictive. The overall cost in practicality of acquiring one more image is small
compared to the rest of the process (calibration, darkening the environment,
changing the illumination etc). In this section we examine color photometric
stereo [4]. This is a setup where it is not possible to obtain more than three im-
ages. The key observation is that in an environment where red, green, and blue
light is simultaneously emitted from different directions, a Lambertian surface
will reflect each of those colors simultaneously without any mixing of the frequen-
cies. The quantities of red, green and blue light reflected are a linear function of
the surface normal direction. A color camera can measure these quantities from
a single RGB image. Recently [5] it was shown how this idea can be used to
obtain a reconstruction of a deforming object. Because color photometric stereo
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is applied on a single image, one can use it on a video sequence without having
to change illumination between frames. In [5] shadowed pixels were detected and
discarded. Here we show how to improve that method by incorporating shadow
regions into the reconstruction. In color photometric stereo each of the three
camera sensors can be seen as one of the three images of classic photometric
stereo. The pixel intensity of pixel (z,y) for the i-th sensor is given by

cile9) = 3 () [ B0 R (.0 8 () ”)
J

Note that now the sensor sensitivity S; and spectral distribution £ are different
per sensor and per light source respectively. To be able to determine a unique
mapping between RGB values and normal orientation we need to assume a
monochromatic surface. We therefore require that R (z,y,\) = a(z,y)p(N).
Where « (z,y) is the monochromatic albedo of the surface point and p (1)) is the
characteristic chromaticity of the material. Let

vy = [ B 00005 )
and
.
vj = (15 v15 v15)
Also define the scaled normal to be
b =a(z,y)n.
Then the vector of the three sensor responses at a pixel is given by
T
C = [Vl Vo V3] [11 12 13] b.

Essentially each vector v; provides the response measured by the three sensors
when a unit of light from source j is received by the camera. If matrix [vl Vo V3]
is known, then we can compute

c= [Vl Vo Vg]il C.

The values of ¢ can be treated in exactly the same way as the three gray-scale
images of section (2). The next section describes a simple process for calibrating
color photometric stereo for handling shadows.

5.1 Calibration

In [5] the authors propose a simple scheme for calibrating objects that can be
flattened and placed on a planar board. The system detects special patterns on
the board, from which it can estimate its orientation relative to the camera. By
measuring the RGB response corresponding to each orientation of the material
they estimate the entire matrix

M = [Vl Vo Vg] [11 12 lg]T
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(d) (f)

Fig. 2. Sphere sequence. In this experiment we validate our regularization scheme
on a synthetic sphere with varying albedo and 10% Gaussian noise. This object is
illuminated from three directions with an occluded black region (a-c). The image in
(d) shows the reconstruction in the absence of noise and regularization. The image
in (e) shows the effect of optimizing the surface using integrability alone. Note the
characteristic ‘scratch’ artifacts. The image in (f) shows the resulting surface after
regularization. The artifacts have been suppressed while the data has been preserved
unsmoothed.

that links the scaled normals to RGB triplets. We propose a two-step process.
Firstly, we use a mirror sphere to estimate light directions 1y, 1, and l3. This is
a standard process which has been applied in a number of photometric stereo
methods. Secondly, we capture three sequences of the object moving in front of
the camera. In each sequence, we switch on only one of the three lights at a time.
In the absence of noise and if the monochromatic assumption was satisfied, the
RGB triplets we acquired would be multiples of v; when light j was switched on.
We therefore do a least squares fit to the three sets of RGB to get the directions
of vi, vy and v3. To get the relative lengths of the three vectors we can use the
ratios of the lengths of the RGB vectors. The length of v; is set to the maximum
length in RGB space, of all the triplets when light j was switched on.

6 Experiments

We present one synthetic experiment and two real experiments on a Frog se-
quence and a Face sequence.

In figure 2 we study the effect of the proposed framework to automatically
detect and correct light occlusions on a half sphere with varying albedo. Figure
2d shows a perfect reconstruction of the sphere in the absence of noise. The
algorithm is capable of segmenting the shadowed regions and recovering the
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shape without any type of regularization on the albedo. However, as soon as we
add noise (see Fig. 2e), the recovered shape shows some characteristic artifacts
due to an almost unconstrained variation of w in eq.(5) along the shadow line.
These artifacts basically show that the recovered shape and albedo are coupled
and integrability constraints on their own are not enough to separate them when
one intensity constraint is missing. Introducing the regularization term of section
4.1 adds a prior on the intensity of the missing channel. This helps recover
the correct shape without loosing any information (see Fig. 2f). In terms of
quantitative results, we have compared the reconstructed normal maps with the
ground truth sphere in terms of angle difference, the results being as follows:

algorithm shadows present| error RMS
ignoring shadows yes 29.52 degrees
just integrability (Fig. 2e) yes 15.79 degrees
proposed method (Fig. 2f) yes 8.67 degrees
data without shadows (ideal case) no 8.30 degrees

As shown by the table, the proposed method performs almost as well as in
the ideal case without any shadows. We obtain an improvement factor of 2 with
respect to just using integrability, and a factor of 4 with respect to ignoring the
fact that shadows are present.

As a first experimental validation with real data, we use the Frog dataset
of [2] which consists of 5 photographs of an object with varying albedo illumi-
nated from 5 different directions. In order to demonstrate the effectiveness of
out technique we select a subset of only three images shown in Fig. 3 top. The
normalized images HCTH in the middle of Fig. 3 allow the algorithm to easily detect
and segment the shadows and to obtain a very accurate shape reconstruction
(see Fig. 3 bottom). Note how these images are almost completely invariant to
albedo changes in the object surface.

Finally, we have performed a second experiment with video data of a white-
painted face illuminated by three colored lights in a similar way as in [5] (see
supplemental video and Fig. 4 left). The setup is calibrated as described in sec-
tion 5.1. The automatic shadow segmentation results in Fig. 4 right, demonstrate
the accuracy of the shadow detection algorithm in Section 4.2. Figure 5 shows
the reconstruction of 3 different frames of the video sequence without taking the
shadows into consideration (top) and after detecting and adding the additional
constraints to the linear solver (middle). We can appreciate how the nose recon-
struction is dramatically improved when correctly processing the shadows, even
though only two lights are visible in the shadowed regions (bottom).

7 Discussion

This paper investigated the problem of shadows in the context of three-source
photometric stereo. This is a particularly challenging case because the surface
orientation is under-determined inside shadow regions. This is because one of
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Fig. 3. Frog sequence courtesy of Manmohan Chandraker. In this experiment we use
three images of the Frog sequence (top). The middle row shows the normalized images
HCTLH Note that they do not show any traces of the albedo variation shown in the

actual images. In the third row from left to right: The non-shadowing cost v/3 —
min, HPTZH The shadow segmentation obtained by our proposed scheme. The final surface
reconstruction.
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Fig. 4. Shadow segmentation. This experiment shows the result of our shadow region
segmentation. On the left is the input image and on the right is the mask with the
resulting shadow labels.

the three necessary constraints is missing due to the shadow. We have shown
however that by exploiting integrability, one can still use the remaining two
constraints to estimate the surface orientation. In its pure form the problem is
ill posed even in the presence of some noise in the data. We provided a remedy
to this in the form of a regularization scheme that does not suppress the data of
the problem. To detect and segment shadows the paper described a simple MRF
optimization scheme, based on the relative darkness of pixel locations. Finally we
showed how the ideas in this paper can be applied to the interesting acquisition
setup of color photometric stereo.
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