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Background 

!  Plethora of depth-measuring technologies 
!  binocular/multi-view stereo 
!  Structured light stereo (e.g. Kinect) 
!  Sonar 
!  Time-of-flight 
!  Laser 
!  … 



Depth-map fusion 

!   Convert depth-maps to scene 
geometry 
!   Crucial problem 

!   Offline fusion: collect all  
depth-maps THEN merge 
!   Point-cloud 
! Octree 
!   TSDF 

!   Online fusion: merge each 
incoming depth-map into state 
!   Forward/inverse sensor modeling 

(Robotics) 
!   TSDF (KinectFusion) 



Truncated Signed Distance Functions 

Voxels along optic ray 

Depth 

!   Shown to be equivalent to accumulating probabilistic evidence 
of visibility (log-odds) 

!   Under a logistic sensor noise model (sech(x)2) 
!   No account of outlier measurements 



Robotics online depth fusion 

!   Inverse models (Elfes & Matthies 87, Konolige 97) 
!  Model directly p(occupancy|depth) 
!  No inter-depencdency of occupancy 

variables along an optic ray (free-space 
constraints) 

!   Forward models (Thrun 01, Pathak 07) 
!  Model p(depth|visibility) 
!  Assume occupancy is driven by visibility 
!  Cannot model occlusion 



Generative model of depth measurement 

Depth 

Voxels along optic ray 

Sample occupancy (Bernoulli) 

Sample depth (measurement model) 

Empty space 



Generative model of depth measurement 

!  Occupancy 
!  Depth measurement  
!  Visible voxel index  
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Geometry priors. Many stereo and depth fusion methods use geometry
priors in their inference, e.g . [5, 11, 2, 6, 1, 16], encouraging surface smoothness.
Here we ignore geometry likelihood, focusing purely on data fusion. We note,
however, that a probabilistic output (which we produce) can easily be combined
with a geometry prior in a second inference stage.

In the next section we present a new, probabilistic framework for the fusion
of depth maps, using a generative model of the sensor measurements (a for-
ward sensor model), within an occupancy volume. Whilst very similar to that
of Pathak et al . [12], it deals probabilistically with occluded surfaces, and also
allows us to associate a di↵erent and unknown measurement model per voxel,
similar to [17]. These unknown measurement models are inferred in parallel with
the depth fusion, enabling our method to operate robustly under dramatically
di↵erent, temporally and even spatially varying, measurement conditions. In §3
we evaluate the improvements resulting from this new model against a range of
other methods.

2 A probabilistic approach

Considering, for the time being, a single sensor ray, our model assumes that
sensor measurements are generated as a function of the occupancy of points
along the ray and the noise properties of the measurement process. In particular,
denoting the binary state of occupancy ofN discrete points ordered along the ray,
starting nearest to the sensor, as x = {x

i

}

N

i=1

, x
i

2 {0, 1}, we assume, according
to the visibility constraint, that a measurement is generated by the first occupied
point along the ray (an inlier or true positive), or alternatively by an outlier
process which generates false positives. Given the visible point (the true surface),
whose index we denote by v, the likelihood of a measurement, y, of the point
is given by the measurement noise distribution M

v

(y). If, on the other hand,
the measurement is an outlier, its likelihood is given by a clutter distribution,
C(y). Applying these assumptions and distributions, the total likelihood of a
measurement, given a state x and marginalizing over the latent variable v, is
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where ! = {!
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2 [0, 1] is a set of outlier ratios, which can also be a
single variable or given constant for the sensor (!

i

= !)—we investigate all
three scenarios here. Note that we have integrated over an additional visible
surface index, v = N+1, which represents the case that no visible surface exists,
implying x

N+1

= 1 and !
N+1

= 1, since any measurement must be an outlier
in this case.
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Is 1 iff v is index 
of first occupied 
voxel 

Measurement 
model 



Inferring occupancy 

!  Prior p(x) factorizes 
!  BUT, posterior p(x|y) doesn’t! 
!  Not feasible to maintain full covariance in 

online fusion 
!  Our approach: 

!  Assume factored approximation q(x) 
!  Minimize KL(p||q) (Expectation Propagation) 
!  Amounts to computing p(xi|y) marginals 

!  Tractable! 



Inferring occupancy 

!  Depth likelihood depends on  
occupancies through index of 
visible voxel 
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Outlier measurements 

!  Can use a simple noise+outlier model 

y 2 R

p (y|x) =
X

v

p (y|v) p (v|x)

p (v|x) = xv

v�1Y

i=1

(1� xi)

v = 1, 2, . . .

1



Outlier measurements 

!  Can use a simple noise+outlier model 

!  Assume ω comes from Beta(α,β) hyper-prior 
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Geometry priors. Many stereo and depth fusion methods use geometry
priors in their inference, e.g . [5, 11, 2, 6, 1, 16], encouraging surface smoothness.
Here we ignore geometry likelihood, focusing purely on data fusion. We note,
however, that a probabilistic output (which we produce) can easily be combined
with a geometry prior in a second inference stage.

In the next section we present a new, probabilistic framework for the fusion
of depth maps, using a generative model of the sensor measurements (a for-
ward sensor model), within an occupancy volume. Whilst very similar to that
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Full model 

!   Factorized prior 

!  Noise + outlier likelihood 

p (x
i

|y) =
X

xk,k 6=i

p (x|y)

p (v|y) = p (y|v) p (v)
p (y)

p (v) = p (x
v

)
v�1Y

i=1

(1� p (x
i

))

p (x
i

|v) =

8
><

>:

1 v = i

0 v > i

p (x
i

) v < i

p (x
i

|y) =
X

v

p (x
i

v|y)

=
X

v

p (x
i

|v) p (v|y)

= p (v = i|y) + p (x
i

)
i�1X

v=1

p (v|y)

v = index of 1st

p (x,!) = p (x) p (!)

1

4 OJ Woodford, G Vogiatzis

In reality we are given y, as well as a prior distribution, and wish to find
a posterior probability over x and !. Applying Bayes’ rule and choosing an
appropriate form of prior, we have
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u↵�1(1 � u)��1 du. The prior, consisting of a product of
binomial and beta distributions, conveniently exhibits independence over all
variables. However, the data likelihood, in particular the visibility constraint
of equation (3), makes the variables in x fully inter-dependent in the posterior.

2.1 A factored approximation

It is impractical to maintain the inter-dependence of variables in x, due to the
large state of size 2N for each ray, and also the MRF complexities which result
from intersecting rays. As such, we approximate our posterior with a distribu-
tion, q(x,!), taking the same form as the prior in equations (5) & (6), but with
parameters denoted �0

i

, etc. This factorization assumes that the state variables
are independent, simultaneously reducing the state to size N per ray and avoid-
ing an accumulation of highly connected dependencies. In addition, the state
update and reparameterization described in §2.2 are made very simple.

It is common to compute such factored approximations by minimizing the
KL-divergence between p(x,!|y) and q(x,!), denoted KL(q||p), or alternatively
minimizing KL(p||q). Here the latter optimization is significantly easier; since
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it is a standard result [18, p.505] that minimal KL(p||q) is achieved matching
the expected su�cient statistics, thus:
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Computing �0
i Ordinarily, computing each expectation of equation (9) would

require an integration over the 2N�1 states of the other variables in x. However,
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Inference 

!  Assume factored approximation 

!  Minimize KL divergence between 
                and 

!  Matching sufficient statistics (~EP) 
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In reality we are given y, as well as a prior distribution, and wish to find
a posterior probability over x and !. Applying Bayes’ rule and choosing an
appropriate form of prior, we have
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Modelling options 
!   Outlier ratio 

!  One fixed ω (generative1) 
!  One ω that is estimated from data (generative2) 
!  Multiple ω, one per optic ray or per voxel, 

estimated from data (generative3) 

!   Online fusion 
!  First order independence assumptions plus 

appearing and disappearing surfaces 
!  Similar to ‘forgetting factor’ in TSDF 

!   How to output depth: use q(v) 



Ground truth benchmarking 

Ground truth Noise added Fused output 

Error/recall 
curve 

Score=area under curve 
normalized to 1.0 



Occupancy vs visible surface along a ray 
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Fig. 2. Occupancies, other states and the e↵ect of discretization. (a)–(f) show, in
blue, the occupancies (or equivalent state variable) for the ray marked with a white
cross in figure 1(c). The occupancy for (e) Konolige is stored as a log likelihood ratio
[8]; the red line denotes occupancy probabilities of 0.5. The red lines in (a)–(d) denote
the visibility distribution of equation (12), used to compute depth. Dashed black and
red lines mark the ground truth and output disparities respectively. (g), (h) The final
error images of the experiment of figure 3(a) for Generative1 and TSDF respectively,
showing (g) the artifacts of disparity discretization.

$ Generative1 Generative2 Generative3 Pathak et al. Konolige TSDF

S
t
a
t
i
c

s
e
n
s
o
r

0 0.065±0.34 0.069±0.33 0.36±0.62 0.000±0.33 1.37±0.25 -0.17±0.23

0.1 0.064±0.35 0.059±0.34 0.19±0.45 -0.002±0.33 1.32±0.25 -0.37±0.31

0.4 0.090±0.39 0.073±0.39 0.070±0.40 -0.002±0.37 1.18±0.33 -7.33±18.0

0.9 0.60±7.08 0.24±6.79 0.45±6.94 0.79±7.91 3.15±11.0 -23.7±20.0

M
o
v
i
n
g

s
e
n
s
o
r

0 0.35±0.97 0.33±1.09 0.35±1.43 0.27±0.86 2.09±8.49 -0.59±3.53

0.1 0.35±2.13 0.34±2.16 0.36±2.20 0.42±2.77 3.69±14.1 -0.69±4.35

0.4 0.50±3.85 0.41±4.09 0.48±3.87 0.74±4.86 6.90±21.1 -1.52±6.87

0.9 2.96±11.1 8.00±18.4 3.39±12.7 3.11±11.1 20.9±32.2 -10.1±12.6

Table 1. Disparity bias. Mean disparity error (± 1 s.d.) for the final frame for two
scenes: one with a static sensor, the other with a moving sensor.

Much of the relative performance of methods can be explained by their states,
e.g . occupancy probabilities, shown for a particular ray (with three seen surfaces)
in figure 2. For example, TSDF locates depth as a zero crossing, which can be
located more accurately than the maxima used by the other methods, which
have discretization artifacts (fig. 2(g),(h)). Also, notice that our three methods
(a)–(c) have better defined occupancy maxima than Pathak et al ., a result of the
latter’s incorrect estimation of occupancy from visibility alone. Finally, in the
case of (a)–(d), once evidence for a near point has built up, any measurements
behind the peak in visibility (red lines) are explained as outliers (if there is
an outlier distribution), leading to a systemic frontal bias, i.e. a bias for closer
disparities.

3.2 Results

Static performance. Figure 3 demonstrates how the methods perform on a
static scene and sensor. Konolige performs badly with no outliers, and counter-
intuitively improves as$, or rather ! (true and given outlier rations respectively;
see dotted lines, fig. 3(b)), increases. However, at low outlier ratios it has very

!   More meaningful occupancy values, with better 
defined maxima 
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(a) Ground truth (b) Noise added (c) Fused output (d) Error-recall

Fig. 1. Methodology. Each test sequence frame (a) is corrupted with noise (b) per
equation (26), then given to the fusion algorithm along with the transformation func-
tion, ⇡t. Given the output of the fusion algorithm (c), error is given by its absolute
di↵erence from ground truth. The per pixel disparity errors are used to compute an
error-recall graph (d), recall being the proportion of pixels with an error lower than
the threshold (x-axis). The graph is plotted up to an error threshold of 5 (our chosen
maximum acceptable error), and the area under this graph computed then divided by
5 to give an accuracy score between 0 and 1. This score is computed every frame.

Generative3, which infers an !
i

for each occupancy grid position, and compare
them against three methods from the literature, namely those of Pathak et al.
[12] and Konolige [8], and the TSDF [14], as implemented in [15].

3.1 Methodology

Our quantitative analysis methodology, outlined in figure 1, is based on synthetic
data, so that we have ground truth depth and sensor pose. We parameterize
depth by its inverse,2 which we refer to as disparity—the methods’ state variables
are positioned at integer disparities from 1 to N = 100 along each ray. We
have generated six sequences of 60–200 frames, similar to figure 1(a), for this
evaluation. Each frame of a sequence is corrupted with noise prior to fusion, with
the noise applied to each pixel drawn randomly from

p(d0|d) = $ · U(d0) + (1�$) · N (d0; d,�), (26)

where d is the real-valued ground truth disparity and d0 is the noisy measure-
ment. The uniform distribution, U(·), represents outliers ($ is the outlier ratio),
and the normal distribution, N (·;µ,�), represents sensor noise. We choose the
clutter and measurement distributions of equation (2) to match those distribu-
tions, and the given outlier ratio ! to match also, unless otherwise stated. We
use � = 3 in our tests here, finding that this value didn’t change the nature of the
results much. This forms the data likelihood term used by all the probabilistic
methods, i.e. all methods except TSDF, which requires only the disparity esti-
mate and a truncation threshold, for which we use 2�. The scoring mechanism
is described in figure 1.

2 Noise variances tend to be more uniform over disparity than depth when using stereo-
based depth estimates (depending on sensor motion), therefore discretizing regularly
over disparity is a more e�cient use of state variables in those cases.



Effect of outlier modelling 

!   Not much effect in low outlier regimes 
!   Generative2 (estimate one ω) is good performance/

computation compromise 

ω=0.0 ω=0.1 



Effect of outlier modelling 

!   Quite significant in heavy-outlier regime 
!   TSDF cannot cope 
!   Methods that model outliers but do not estimate ω also do poorly 

ω=0.9 



Motion 

Moving sensor Moving object 

Generative1,2 

TSDF Forward 

!   Faster reaction time to occlusions/disocclusions 
!   Due to more accurate occlusion reasoning 



Ground truth benchmarking 
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Fig. 2. Occupancies, other states and the e↵ect of discretization. (a)–(f) show, in
blue, the occupancies (or equivalent state variable) for the ray marked with a white
cross in figure 1(c). The occupancy for (e) Konolige is stored as a log likelihood ratio
[8]; the red line denotes occupancy probabilities of 0.5. The red lines in (a)–(d) denote
the visibility distribution of equation (12), used to compute depth. Dashed black and
red lines mark the ground truth and output disparities respectively. (g), (h) The final
error images of the experiment of figure 3(a) for Generative1 and TSDF respectively,
showing (g) the artifacts of disparity discretization.
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scenes: one with a static sensor, the other with a moving sensor.

Much of the relative performance of methods can be explained by their states,
e.g . occupancy probabilities, shown for a particular ray (with three seen surfaces)
in figure 2. For example, TSDF locates depth as a zero crossing, which can be
located more accurately than the maxima used by the other methods, which
have discretization artifacts (fig. 2(g),(h)). Also, notice that our three methods
(a)–(c) have better defined occupancy maxima than Pathak et al ., a result of the
latter’s incorrect estimation of occupancy from visibility alone. Finally, in the
case of (a)–(d), once evidence for a near point has built up, any measurements
behind the peak in visibility (red lines) are explained as outliers (if there is
an outlier distribution), leading to a systemic frontal bias, i.e. a bias for closer
disparities.

3.2 Results

Static performance. Figure 3 demonstrates how the methods perform on a
static scene and sensor. Konolige performs badly with no outliers, and counter-
intuitively improves as$, or rather ! (true and given outlier rations respectively;
see dotted lines, fig. 3(b)), increases. However, at low outlier ratios it has very

Fixed ω Estimate 
one ω 

Estimate 
multiple ω 

Forward 
model 

Inverse 
model 

Kinect  
fusion 

Our method 

!   Smaller errors at high ω regime 
!  TSDF struggles 



Estimating different outlier ratios 

Ground truth ω 

Estimated ω 

!   Can identify regions in the scene that produce 
different sensor response (e.g. shiny/textureless) 

!   First stage of scene classification scheme 



Kinect – static scene/moving sensor 



Kinect – moving scene/static sensor 



Kinect data 
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(a) Scores (b) Error-recall (c) Generative1 err. (d) TSDF err.
Fig. 7. Quantitative stereo. (a) Scores over time for fused stereo data from a moving
camera. (b) Error-recall curves for frame 30 of the sequence. Disparity errors for frame
30 of the sequence for (c) Generative1 and (d) TSDF.

(a) Input image (b) Estim. disparity (c) : (f) � (e) (d) : (g) � (e)

(e) Generative2 (f) Pathak et al . (g) TSDF
Fig. 8. Qualitative stereo. (a) Frame 121 of 477 from an aerial movie. (b) The
estimated disparity of the input frame. The fused disparities, weighted by certainty
(TSDF weight estimated by gradient at zero crossing) and overlaid on the grayscale
input frame, are shown for (e) Generative2, (f) Pathak et al . and (g) TSDF, with
di↵erence images (c), (d).
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(a), (b) Sensor data (c), (d) Generative1 (e), (f) Pathak et al . (g), (h) TSDF

Fig. 9. KinectFusion. Top row : Lit normal maps of the geometry input (a) and
computed using Generative1 (c), Pathak et al . (e) and TSDF (g), for a Kinect sensor
moving around a static scene. Bottom row : Disparity maps input (b) and computed
using Generative (d), Pathak et al . (f) and TSDF (h), for a static sensor viewing a
person moving their arms up and down.

Sensor data Our method TSDF 



Multi-view stereo data 



Multi-view stereo data 
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(a) Scores (b) Error-recall (c) Generative1 err. (d) TSDF err.
Fig. 7. Quantitative stereo. (a) Scores over time for fused stereo data from a moving
camera. (b) Error-recall curves for frame 30 of the sequence. Disparity errors for frame
30 of the sequence for (c) Generative1 and (d) TSDF.

(a) Input image (b) Estim. disparity (c) : (f) � (e) (d) : (g) � (e)

(e) Generative2 (f) Pathak et al . (g) TSDF
Fig. 8. Qualitative stereo. (a) Frame 121 of 477 from an aerial movie. (b) The
estimated disparity of the input frame. The fused disparities, weighted by certainty
(TSDF weight estimated by gradient at zero crossing) and overlaid on the grayscale
input frame, are shown for (e) Generative2, (f) Pathak et al . and (g) TSDF, with
di↵erence images (c), (d).
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(a), (b) Sensor data (c), (d) Generative1 (e), (f) Pathak et al . (g), (h) TSDF

Fig. 9. KinectFusion. Top row : Lit normal maps of the geometry input (a) and
computed using Generative1 (c), Pathak et al . (e) and TSDF (g), for a Kinect sensor
moving around a static scene. Bottom row : Disparity maps input (b) and computed
using Generative (d), Pathak et al . (f) and TSDF (h), for a static sensor viewing a
person moving their arms up and down.
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30 of the sequence for (c) Generative1 and (d) TSDF.
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Fig. 8. Qualitative stereo. (a) Frame 121 of 477 from an aerial movie. (b) The
estimated disparity of the input frame. The fused disparities, weighted by certainty
(TSDF weight estimated by gradient at zero crossing) and overlaid on the grayscale
input frame, are shown for (e) Generative2, (f) Pathak et al . and (g) TSDF, with
di↵erence images (c), (d).
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(a), (b) Sensor data (c), (d) Generative1 (e), (f) Pathak et al . (g), (h) TSDF

Fig. 9. KinectFusion. Top row : Lit normal maps of the geometry input (a) and
computed using Generative1 (c), Pathak et al . (e) and TSDF (g), for a Kinect sensor
moving around a static scene. Bottom row : Disparity maps input (b) and computed
using Generative (d), Pathak et al . (f) and TSDF (h), for a static sensor viewing a
person moving their arms up and down.

Input 
Estim. Depth using  
Vogiatzis&Hernandez 2011 

Our method Forward model TSDF 



Take home messages 

!   Use more realistic sensor modelling (e.g. outliers) 
!   Generative models react faster to scene changes 
!   Our occlusion model => better reconstruction at depth discontinuities 
!   Inferring outlier ratios helps, but significantly only in extreme cases 

!   interesting potential for scene classification 
!   Volume resampling is slow (~9fps in KinectFusion) but allows zooming 

 Many more experimental results in ECCV’12 paper 
 Thanks! 
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